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Abstract
We report a Monte Carlo simulation of deposition of magnetic particles on
a one-dimensional substrate. Incoming particles interact with those that are
already part of the deposit via a dipole–dipole potential. The strength of the
dipolar interaction is controlled by an effective temperature T ∗, the case of pure
diffusion-limited deposition being recovered in the limit T∗ → ∞. Preliminary
results suggest that the fractal dimension of the deposits does not change with
temperature but that there is a (temperature-dependent) crossover from regimes
of temperature-dependent to universal behaviour. Furthermore, it was found
that dipoles tend to align with the local direction of growth.

1. Introduction

Magnetic particles are a key ingredient of many modern data recording and storage devices,
from music tapes to computer hard disks [1]. For these applications smooth, regular magnetic
layers are usually desired. However, dipoles, both magnetic and electric, display a fondness
for arranging themselves into highly inhomogeneous structures. This is a consequence of the
very strong anisotropy of the dipole–dipole interaction, which couples the orientations of the
dipole moments with that of the interparticle vector. Because the potential energy at a fixed
separation is lowest for a head-to-tail geometry, chain formation is particularly favoured in
ferrofluids (dispersions of ferromagnetic particles) [2] or electrorheological fluids (dispersions
of highly polarizable particles in solvents with low dielectric constant) [3] in magnetic and
electric fields, respectively. Whether such chaining can occur in zero field in the absence of
any interactions other than dipolar is experimentally uncertain; it has been seen in simulations,
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but is not yet fully accounted for theoretically. Likewise, what is the true equilibrium structure
of a solid of hard magnetic particles is still unsettled (see, e.g., [4] and references therein).

It is therefore of great importance, from a practical as well as from a fundamental point of
view, to investigate the influence of true long-range magnetic dipolar forces on the geometry
of particle aggregates, so as to be able to exert better control over them. This is especially
relevant to the very novel field of self-assembled nanostructured magnetic materials, where
the aim is to allow different microscopic components to organize themselves into complex
functional patterns once their interactions have been appropriately tailored [1, 5]. Many of
these devices, either existing or at the design stage, have low dimensionalities (e.g., wires
and films), at which simulations of model systems have revealed the chaining tendency to be
particularly strong [6–9].

To our knowledge, there is only one detailed study of how dipolar interactions alone
affect growth. Pastor-Satorras and Rubı́ [10] simulated an off-lattice, two-dimensional (2D)
particle–cluster aggregation model. They found a monotonic variation of the fractal dimension
of the aggregates as a function of temperature (i.e., dipole strength), the limit of diffusion-
limited aggregation (DLA) being recovered at high temperatures. In addition, a separate
investigation by the same authors has shown that highly structured layers could be obtained
at low temperatures by sequential adsorption of dipolar particles [11]. See also [12, 13] for
related work on other systems.

Here we report on a simulation of dipole deposition on a one-dimensional (1D) substrate
(i.e., a line). In the limit of zero magnetic moment this reduces to diffusion-limited deposition
(DLD), which should exhibit the same geometrical properties as DLA [14]; our work thus
serves as a both a check and an extension of Pastor-Satorras and Rubı́’s to the case of an
infinite (in one spatial dimension) system. In particular, we want to ascertain: firstly, whether
the fractal dimension actually changes owing to the strong anisotropy of the dipolar interaction:
and, secondly, what is the correlation between the orientations of dipoles in the aggregate and
its direction(s) of growth. For computational convenience our dipoles are restricted to residing
at the sites of a 2D square lattice (although they can point in any direction of three-dimensional
(3D) space): we assume that any effects coming from this discretization of space are much
smaller than those of the interparticle potential. That this should be so is suggested by results for
DLA [15] (but remains of course to be confirmed by full off-lattice calculations). Furthermore,
our analysis in terms of the concepts of fractal geometry presumes that all our deposits are
self-similar over some length scale larger than the mesh spacing but smaller than the deposit
size [14]; again, this need not be true of the smallest deposits, but these contain only a very
small fraction of the total number of particles.

The present paper is a natural progression to non-equilibrium processes from our earlier
researches on the thermodynamics and phase equilibria of dipolar fluids [4]. It is organized
as follows: in section 2 we describe our model and the simulation method employed. Then in
section 3 we present and discuss our results, specifically comparing them with those of Pastor-
Satorras and Rubı́ [10]. Section 4 summarizes our findings and outlines prospects for future
research. Technical details pertaining to the treatment of the long range of the dipole–dipole
interaction are relegated to two appendices.

2. Model and simulation method

Our simulations were performed on a (1 + 1)-dimensional square lattice of width L = 800a
sites and any height that can accommodate N dipoles, where a is the mesh spacing and
the adsorbing substrate coincides with the bottom row (henceforth we take a = 1). Periodic
boundary conditions are imposed in the direction parallel to the substrate. Each particle carries
a 3D dipole moment of strength µ and they interact through the pair potential
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φD(1, 2) = −µ2

r3
12

[3(µ̂1 · r̂12)(µ̂2 · r̂12) − µ̂1 · µ̂2], r12 � a, (1)

where r12 is the distance between particles 1 and 2, r̂12 is the 2D unit vector along the
interparticle axis, and µ̂1 and µ̂2 are the 3D unit vectors in the direction of the dipole moments
of particles 1 and 2 respectively. Finally, ‘1’ and ‘2’ denote the full set of positional and
orientational coordinates of particles 1 and 2.

A particle is introduced at a lattice site (xin, Hmax + AL), where xin is a random integer
in the interval [1, L], Hmax is the maximum distance from the substrate to any particle in the
deposit, and A is a constant. The dipole moment of the released particle is oriented at random.
The particle then undergoes a random walk by a series of jumps to nearest-neighbour lattice
sites, while experiencing dipolar interactions with the particles that are already attached to the
deposit. We incorporate the effects of these interactions through a Metropolis algorithm. If the
deposit contains N particles, then the interaction energy of the (N +1)th incoming particle (the
random walker) with the particles in the deposit is given by E(r, µ̂) = ∑N

i=1

∑∞
n φD(i, N +1),

where r and µ̂ are the current position and the dipole orientation of the random walker
respectively (r is a 2D vector). Then we randomly choose a new position r′ (|r − r′| = a)
and a new dipole orientation µ̂

′ for the random walker; this displacement is accepted with
probability

p = min

{
1, exp

[
− E(r′, µ̂

′
) − E(r, µ̂)

T ∗

]}
. (2)

T ∗ = kB T a3/µ2 is an effective temperature, inversely proportional to the dipolar energy scale.
In the limit T ∗ → 0 only displacements that lower the energy E(r′, µ̂

′
) are accepted. On the

other hand, in the limit T ∗ → ∞ all displacements are accepted and our model reduces to the
well-known DLD [14].

The long range of the dipole–dipole interaction was treated by the Ewald sum method
(see appendix A for details). In our simulations we set α = 10/L, for which it suffices to
retain terms with n = 0 in the real-space sum of equation (A.11). The sum in reciprocal space
extends over all lattice points k = 2πn/L with |n| � 16, whereas the sum in real space is
truncated at L/2.

The particle eventually either contacts the deposit (i.e., becomes a nearest neighbour of
another particle that is already part of the deposit) or moves away from the substrate. In the
latter case, if the particle reaches a distance from the substrate greater than Hmax + 2AL, it is
removed and a new one is launched. Once a particle has reached the substrate or the deposit, its
dipole relaxes along the direction of the local field created by all other particles in the deposit.
In all simulations reported here we took A = 1; larger values of A were tested and found to
give the same results, but with drastically increased computation times.

3. Results and discussion

Four effective temperatures were considered: T ∗ = 10−1 (28 deposits), 10−2 (41 deposits),
10−3 (42 deposits), and 10−4 (54 deposits), chosen to be in the range where the fractal dimension
of dipolar DLA clusters is expected to change [10]. Each deposit contains 50 000 dipoles. We
have also generated 30 DLD deposits on the same lattice by this same method, with T ∗ = ∞;
known results for DLD (see, e.g., [16]) were used to check the validity of our algorithm. On
the other hand, comparison between these and the results for finite temperatures reveal the
effect of dipolar interactions on DLD.

Figure 1 is a snapshot of two deposits for T ∗ = 10−1 (black) and T ∗ = 10−4 (grey;
only part of the deposit is shown—in fact, it grows up to a height of about 8000). The two
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Figure 1. Snapshots of two deposits obtained for T ∗ = 10−1 (black) and T ∗ = 10−4 (grey).

deposits have the same general appearance, already observed in DLD: they consist of several
trees competing to grow. As the size of the deposit increases, fewer and fewer trees ‘survive’
(i.e., carry on growing), as a consequence of the so-called shielding or screening effect. From
figure 1 this seems more pronounced at lower temperatures, since above a height of 1000
(about 1/8 of the maximum height attained by this deposit) only one tree survives.

In order to compare quantitatively the results obtained for different temperatures we have
measured the mean density of dipoles ρ(h) at a height h,

ρ(h) =
〈

1

L

L∑
i=1

η(i, h)

〉
, (3)

where η(i, h) is 1 (0) if the site with coordinates (i, h) is occupied (unoccupied), and the
average (denoted by angular brackets) is taken over all available deposits at each temperature.
ρ(h) is plotted in figure 2(a): all the curves have similar shapes, with a smooth decrease at
small h, levelling off (saturating) at intermediate h, and with a sharp drop at large h, when the
top of the deposit is reached. It is immediately noticed that the finite-temperature curves differ
from that for DLD in one important respect: the density at a given height and the maximum
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Figure 2. (a) The mean density ρ(h) of deposits at height h: random deposition (solid curve),
T ∗ = 10−1 (dotted curve), 10−2 (dashed curve), 10−3 (long-dashed curve), and 10−4 (dot–
dashed curve). (b) h∗ρ(h) versus h/h∗: random deposition (circles), T ∗ = 10−1 (squares), 10−2

(diamonds), 10−3 (upward-pointing triangles), and 10−4 (downward-pointing triangles). The solid
line is a linear fit to the DLD results in the range of the graph; it has slope −0.28.

height h∗ attained by the deposits vary with temperature. These variations are monotonic:
ρ(h) is smaller and h∗ is larger at lower temperatures and thus the increase in the strength of
dipolar interactions enhances the shielding effect.
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For DLD, ρ(h) was found to be of the form [14]

ρ(h) ∝ h−αg(h/h∗), (4)

where α, the so-called codimensionality, is the difference between the dimension of space d
(=2, in the present case) and the fractal dimension D of the deposit, h∗ is the maximum height,
and g(x) is a universal function. g(x) ≈ 1 when x � 1 and decays faster than any power of x
when x → 1. In order to compare DLD and finite-temperature results, we propose a general
form for ρ(h), inspired by equation (4):

ρ(h, T ∗) = A(T ∗)h−αg(h/h∗), (5)

where A(T ∗) is some unknown function of T ∗ only. It is easily seen that A(T ∗) can be found
as a function of h∗ and of the number of particles in the deposit N , by using the normalization
condition

N = L
h∗∑

h=1

ρ(h, T ∗) ≈ L
∫ h∗

1
ρ(h, T ∗) dh, (6)

whence

A(T ∗) = Nh∗(α−1)

L
∫ 1

1/h∗ x−αg(x) dx
. (7)

Since g(x) is a universal function and L and N are the same for all the deposits that we are
analysing, equation (5) becomes

ρ(h, T ∗)h∗ ∝
(

h

h∗

)−α

g(h/h∗). (8)

In figure 2(b) we plot h∗ρ(h, T ∗) as a function of h/h∗, for h/h∗ � 1 on a log–log scale. The
data points for DLD follow, as expected, a straight line. A linear regression gives α ≈ 0.27
and thus D ≈ 1.73, in good agreement with what was obtained previously by several other
methods [16, 17]. If the full functional dependence of ρ(h, T ∗) were captured by equation (5),
two possibilities would arise:

(i) α is T ∗-independent and all curves are parallel straight lines;
(ii) α depends on T and all curves are straight lines with different slopes.

However, we arrive at neither of these scenarios, so the situation is a little more complex.
If we were to interpret our results in terms of a function similar to equation (5), then g(x)

would also need to have an explicit temperature dependence. This dependence should be able
to describe the trends observed in figure 2(b) for finite temperatures: a crossover between an
approximately linear regime for very low relative heights, characterized by an exponent greater
than α = 0.27; and a linear regime for intermediate heights, characterized by roughly the same
exponent as DLD.

In [10] it was argued that the change in the conformational properties of DLA clusters
introduced by the presence of dipolar interactions could be interpreted as a change in their
fractal dimension. The fractal dimension for each temperature was determined by measuring
the dependence of the radius of gyration of dipolar DLA clusters on the number of particles
in a cluster. Between T ∗ = 10−1 and 10−4 a fractal dimension was obtained ranging from
about 1.7 to 1.2. We have performed linear fits to the data shown in figure 2(b), using only
those points corresponding to heights below the region where the crossover referred to above
seems to take place. These points follow straight lines with temperature-dependent slopes
ranging from 0.3 (for T ∗ = 10−1) to 0.6 (for T ∗ = 10−4). On the basis of the analysis of
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just this part of the deposit, we obtain an (apparent) variation of the fractal dimension of the
deposits with T ∗, from D = 1.7 to 1.4. We conclude, as was already pointed out in [14] and
seems to be confirmed by the present work, that the results of [10] can be interpreted in terms
of a crossover between a temperature-dependent fractal dimension at short length scales, to
D ≈ 1.7 at long length scales, with a crossover height that itself depends on temperature. This
conclusion must, however, be tested with longer simulations at the lowest temperatures, where
the statistics are a little poorer.

There are other routes to estimating the fractal dimension of the deposits. We shall use
one other to show that it is not necessary to assume that the finite-temperature deposits have
a fractal dimension different from DLD. The mean height of the upper surface, hm , when the
deposit contains M particles, is defined as [16]

hm(M) =
〈

1

L

L∑
i=1

hmax (i, M)

〉
, (9)

where hmax (i, M) is the maximum height of the occupied sites of column i when there are M
particles in the deposit. In a DLD deposit this quantity is expected to scale with M , as [16]

hm ∝ Mφ. (10)

The exponent φ is related to the codimensionality α = d − D by φ = 1
1−α

and to the fractal
dimension by D = d − 1 + φ−1. In figure 3 we plot our results for hm(M). The scaling law,
equation (9), is known to be valid in the limit M → ∞ [16]. As in [16], we have performed
several linear regressions for large M , in the range M1 < M < M2, for (M1, M2) = (0.5N, N),
(0.25N, N), (0.1N, N), and (0.25N, 0.5N) (recall that N = 50 000). For every temperature
and every range considered we found that 1.33 < φ < 1.44, which corresponds to a fractal
dimension, 1.69 < D < 1.75. Moreover, we have found no evidence of any regular variation
of φ with T ∗ over a given range of M . Figure 3(a) shows that, in the initial stages of growth,
the mean height of the upper surface grows identically at every temperature. There is then
a crossover region at intermediate stages when the less dense deposits grow slightly faster.
Finally, in the later stages all the deposits grow at the same rate regardless of temperature, as
evidenced by figure 3(b). However, note that, as is clear from figure 3(a), if the deposits had
been allowed to grow only to intermediate stages (e.g., up to M = 10 000), an increasing value
of φ with increasing temperature would have obtained, and thus an apparent variation of D
with T ∗, with the same trends as observed through the calculation of ρ(h).

We conclude this analysis by attempting to make a first connection between the orientation
of the dipoles in the deposit and its growth. Figure 4 is a snapshot of part of a deposit for
T ∗ = 10−1. Dipoles whose horizontal (or lateral) component is smaller (greater) in absolute
value than their vertical component are shown in black (grey). Since we have verified that the
z-component (i.e., out-of-plane component) of the dipoles in the deposit is zero after a short
time, figure 4 suggests that the dipoles tend to align with the direction of growth of the deposit
at the site where they attach. In order to make this idea more quantitative, we have measured
the angles ω between the direction of the dipole moments of all incoming particles and the
direction of growth at their point of attachment to the deposit. We have done so by recording
whether a new dipole becomes attached to the substrate due to a neighbour positioned to its left
or to its right (lateral growth: the relevant angle is that between the dipole and the horizontal
axis), or above or below it (vertical growth: the relevant angle is now that between the dipole
and the vertical axis). We did not take into account particles that attach to the deposit having
both vertical and horizontal neighbours. Once these angles were collected, for every deposit at
each temperature, we constructed a frequency histogram by dividing the interval (−π, π) into
1000 sub-intervals. In figure 5 we plot these results for lateral and vertical growth at T ∗ = 10−1
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Figure 3. (a) Mean height of the upper surface, hm , as a function of the number of particles, M.
The lines are as in figure 2(a). (b) A blow-up of the large-M region.

and 10−4. Because all curves have period π and are even, only the interval (−π/2, π/2) is
shown. The main feature of all the curves is the strong peaks at ω = 0, implying that most
dipoles align in the direction of growth of the deposit. This is a consequence of the fact that
the lowest-energy configuration of two dipoles a fixed distance apart is head-to-tail along the
direction of the interdipole vector. These peaks are more pronounced at the lower temperature,
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Figure 4. Detail of a deposit for T ∗ = 10−1. Sites whose dipoles make an angle of absolute value
smaller (larger) than π/4 with the vertical axis are shown in black (grey).

and the peak for vertical growth is a little higher than that for lateral growth at both temperatures,
implying that growth in the vertical direction is more likely to happen with dipoles aligned
vertically than growth in the lateral direction with dipoles aligned horizontally.

The curves exhibit some other, lower, peaks. There is a broad, low peak around ω = π/2
at T ∗ = 10−1, which corresponds to lateral growth with vertically aligned dipoles (‘black’
horizontal branches in figure 4), or to vertical growth with horizontally aligned dipoles (‘grey’
vertical branches in figure 4), at high temperatures. This can be explained by noting that the
second-lowest minimum of the interaction energy at fixed separation is for two antiparallel
dipoles. These peaks seem to disappear at T∗ = 10−4, suggesting that energetic effects become
more important as the temperature is lowered.

There are several other peaks, occurring at the same angles for both lateral and vertical
growth, whose positions seem unaffected by changing the temperature. At the present stage
of our work, we can only speculate as to their origin. We believe these peaks come from a
combination of lattice effects and the properties of the dipolar interaction. It is actually known
that the minimum-energy arrangement of n (�3) dipoles is obtained by placing them at the
vertices of a regular n-sided polygon, tangent to the circumscribing circle. Thus four dipoles
on a square lattice will minimize their energy by making π/4 angles with the horizontal and
vertical axes, which might explain the peaks observed in figure 4 at that angle. The remaining
peaks may likewise correspond to other arrangements of dipoles realizing other minima of the
energy of sets of dipoles on a square lattice.

4. Concluding remarks

We have simulated the deposition of dipolar particles on a 1D substrate using a lattice model.
Our findings suggest that the fractal dimension of the deposits is the same as for DLD
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Figure 5. Frequency histograms of the angle ω between dipole orientation and the local direction
of growth, for (a) T ∗ = 10−1 and (b) T ∗ = 10−4. The solid curves correspond to lateral growth
and the dotted curves to vertical growth.

and hence unaffected by the dipolar interactions, but also that there is a crossover from
temperature-dependent to temperature-independent behaviour which can be very broad. A
fuller characterization in terms of the height–height correlation function, tree size distributions,
and density scaling with system size is in progress and will be published elsewhere.
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These quantities would provide additional routes to the fractal dimension, thus allowing us
further to verify (or disprove) our preliminary conclusions. Growth and roughness exponents
will also be calculated.

We have now started work on the off-lattice version of the present model, so as to be free
from any possible artifacts arising from the discretization of space. Results so far suggest that
the lattice has a very small effect, but we are currently somewhat limited by the very high
computational cost of evaluating the interactions between a particle and all its periodic images
at every step. More efficient algorithms are being developed to tackle this.
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Appendix A. Ewald sums for the deposition process

We have generalized to arbitrary dimensions a method proposed by Grzybowski et al [18]
for evaluating Ewald sums. Here for simplicity we just present results for our case d = 1
(where d is the number of dimensions in which we impose periodic boundary conditions).
Our simulation box consists of a rectangle with a base of length L and any height that can
accommodate N dipoles. The dipoles µi are always 3D vectors, with position vectors Ri ,
i = 1, 2, . . . , N . The simulation box is repeated in the x-direction (horizontal), giving rise to
a regular lattice whose sites are located at n = (n, 0)L. Let µ and R be the dipole moment
and position of an incoming particle. Then, the distance between the incoming particle in
the origin cell and another in an image cell is ri ≡ R − (Ri + n), i = 1, 2, . . . , N . The
total interaction energy between the incoming particle and the N particles in the box and their
infinite replicas is

E =
N∑

i=1

∞∑
n

{
µ · µi

|ri + n|3 − 3
[µ · (ri + n)][µi · (ri + n)]

|ri + n|5
}
. (A.1)

According to the geometry of the system, ri = (xi , yi , 0) where xi (yi ) is the horizontal
(vertical) distance between the incoming particle and a particle in the deposit. Note that the
incoming particle does not interact with its own images.

Introducing the notation

ψ(r) =
∑

n

1

|n + r|3 , r 
= 0, (A.2)

θ(r, c) =
∑

n

e−ic·(n+r)

|n + r|5 , r 
= 0. (A.3)

allows us to express the total energy as

E =
N∑

i=1

µ · µiψ(ri ) + 3
N∑

i=1

(µ · ∇c)(µi · ∇c)θ(ri , c)|c=0. (A.4)

To calculate ψ(r) and θ(r, c) we use the identities

x−2u = 1

	(u)

∫ ∞

0
tu−1e−xt2

dt, (A.5)
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∑
n

e−t|r+n|2−ic·(r+n) =
(

π

t L2

)1/2 ∑
k

eik·r exp

(
− (k + c)2

4t

)
. (A.6)

k = 2π(k, 0)/L with k integer is a reciprocal-lattice vector and r and n are as above.
Equation (A.5) is a direct consequence of the definition of the gamma function, while
equation (A.6) is a form of the Poisson summation formula for d = 1, which is the
dimensionality of the lattice formed by repeating the box.

For ψ(r) we set u = 3/2, leading to

ψ(r) = 1

	(3/2)

∑
n

∫ ∞

0
t1/2e−|r+n|2t dt . (A.7)

The sum over direct-lattice vectors converges fast for large t , while that over reciprocal-lattice
vectors does so for small t . We therefore choose an arbitrary separation parameter α2 for the
t-integration and decompose the lattice sum into two terms:

ψ(r) = 2√
π

∑
n

∫ ∞

α2
t1/2e−t|r+n|2 dt +

2√
π

∑
n

∫ α2

0
t1/2e−t|r+n|2 dt . (A.8)

Taking into account that −t|r + n|2 = −t|x + n|2 − ty2 and using the Poisson summation
formula, equation (A.6), we arrive at

ψ(r) = 2√
π

∑
n

∫ ∞

α2

t1/2e−t|r+n|2 dt +
2
√

π

L

∑
k

e−ikx
∫ α2

0
exp

(
−ty2 +

k2

4t

)
dt . (A.9)

In the case of θ(r, c) we set u = 5/2 with the result

θ(r, c) = 1

	(5/2)

∑
n

e−ic·(r+n)

∫ ∞

α2

t3/2e−t|r+n|2 dt

+
4

3L

∑
k

eikx−iycy

∫ α2

0
t exp

(
−ty2 +

k2

4t

)
dt . (A.10)

We now substitute ψ(r) and θ(r, c) into equation (A.4) for E :

E = 2√
π

∑
i

∑
n

{
(µ · µi )I1/2(α, β) − 2[µ · (ri + n)][µi · (ri + n)]I3/2(α, β)

}

+
2

L

∑
i

∑
k

(µyµiy + µzµi z)e
ikxi J0(α, yi , k)

− 4

L

∑
i

∑
k

µyµiy y2
i eikxi J1(α, yi , k)

+
1

L

∑
i

∑
k 
=0

µxµi x k2eikxi J−1(α, yi , k)

+ i
2

L

∑
i

∑
k 
=0

k(µxµiy + µi xµy)yi eikxi J0(α, yi , k), (A.11)

where β = |ri + n| and the integrals are given by (see appendix B for details)

I1/2(α, |ri + n|) = αe−|ri +n|2α2

|ri + n|2 +

√
π

2|ri + n|3 erfc(α|ri + n|), (A.12)

I3/2(α, |ri + n|) = αe−|ri +n|2α2

|ri + n|2
(

α2 +
3

2|ri + n|2
)

+
3
√

π

4|ri + n|5 erfc(α|ri + n|),

Jν(α, yi , k) =
∫ α2

0
tνe−t y2

i −k2/4t dt . (A.13)
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Since E is real, equation (A.11) can be further simplified by replacing exp(ikxi) by
cos(kxi) + i sin(kxi). Note also that it is even in k and that the case k = 0 can be treated
analytically. Therefore, no distinction is made in the code between simulation box images
with positive and negative k, and the case k = 0 is considered separately.

Appendix B. Evaluation of some relevant integrals

The following definitions and results will be useful:∫ ∞

0
e−νt2

dt = 1

2

√
π

ν
, (B.1)

erf(u) ≡ 2√
π

∫ u

0
e−t2

dt, (B.2)

erfc(u) ≡ 1 − erf(u) = 2√
π

∫ ∞

u
e−t2

dt . (B.3)

Two classes of integration need to be performed:

Iν(α, β) =
∫ ∞

α2

tνe−tβ2
dt, (B.4)

Jν(α, a, b) =
∫ α2

0
tνe−at−b/t dt . (B.5)

We are interested in I1/2 and I3/2. They can be evaluated with the help of I (−1/2), which is
easy:

I−1/2(α, β) =
√

π

β
erfc(αβ), (B.6)

where we have made the change of variable t = z2/β2. Now the cases ν = 1/2 and 3/2 can
be easily found by integrating by parts:

I1/2(α, β) = αe−β2α2

β2
+

√
π

2β3
erfc(αβ), (B.7)

I3/2(α, β) = αe−β2α2

β2

(
α2 +

3

2β2

)
+

3
√

π

4β5
erfc(αβ), (B.8)

where we have resorted to the changes of variables u = t1/2 and u′ = −e−β2t . Turning next to
Jν , the values of ν that we are interested in depend on the system dimensionality. For d = 1,
ν = −1, 0, 1 and no analytical results are available, in contrast to the d = 2 case. One of the
three integrals, however, can be expressed in terms of the other two:

k2

4
J−1 + J0 − y2 J1 = α2 exp

(
−y2α2 − k2

4t

)
. (B.9)
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